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Abstract—A method is presented for calculating the temperature in a solidifying slab of molten material

with greatly differing cooling rates on the inner and outer surfaces. For the purposes of analysis the slab

is divided into a number of zones having time-varying boundaries, e.g. solidification or conduction fronts.

Appropriate approximations are made for the temperature profile and the heat-balance integral equation

applied separately in each zone. This leads to systems of first-order ordinary differential equations which

can be integrated numerically by using simple standard methods. Results are presented which correspond
to the industrial casting of polypropylene film.

1. INTRODUCTION

THE WORK described in this paper was motivated by
a requirement to predict temperature profiles in a
polypropylene film during casting. The casting process
involves passing molten film over a series of chill
rollers which cools and solidifies it. Additional
cooling, due to convection from the outer surface of
the film, also occurs. The convective cooling could be
boosted ten-fold by installing an air chamber. An
assessment had to be made of the effect of this on the
overall cooling process. In particular, predictions of
the temperature profiles at the end of the first roller,
with and without an air chamber, were required. To
a good approximation the cooling process could be
regarded as one-dimensional. Thus a method was
required for calculating the temperature in a solidify-
ing slab of initially molten material with greatly
differing cooling rates on the inner and outer surfaces.

As is common in such industrial problems only
approximate values were available for the various
input parameters, such as the convective heat-transfer
coefficients and the physical properties of the material.
Consequently, provided any singular behaviour is
properly treated, there would be little point in develop-
ing a highly accurate numerical approach to the
problem. Thus the integral method described below
was developed. This method is an extension to that
devised by Goodman and others [1-4]. A singularity
is found to occur when the liquid material first reaches
its freezing temperatere. A special procedure for
dealing with this singularity is introduced. The
method is fairly general and should be applicable to
other similar situations. Several previous authors
[1-10] have used integral methods to investigate
problems similar to the present one. These authors,
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however, have considered model problems which are
rather simpler than the present one. For instance, in
most cases the initial temperature has been set equal
to the melting temperature. This greatly simplifies
matters since it means that the temperature of one of
the phases remains constant, making any calculation
thereof unnecessary. Yuen [8] includes initial sub-
cooling in his analysis but in his case either fixed
temperature or fixed heat-transfer rate is imposed as
a boundary condition.

In the present method the heat-transfer domain is
divided into zones. The boundaries of the zones are
defined so as to have definite physical significance,
¢.g. a line of solidification or position of a conduction
front. Appropriate approximations are made for the
temperature profile in each zone and the heat-balance
integral equation applied separately to each zone.
In this way relatively simple systems of first-order
ordinary differential equations are derived. These can
be readily integrated numerically by simple standard
techniques.

The paper is set out in the following way. The
analytical treatment is developed in Section 2. Section
2.1 describes the cooling process and identifies three
time periods—a sub-cooling period and two subse-
quent periods. The integral relations and boundary
conditions are discussed in Section 2.2. The solution
for Period I is obtained in Section 2.3. The temper-
ature profiles and governing equations for Periods II
and III are derived in Sections 2.4 and 2.5, respectively.
Results and discussion are presented in Section 3. In
Section 3.1 comparisons are made between the results
of Westphal’s [11] series solution and those obtained
using the present method. However, Westphal’s solu-
tion only applies to the relatively simple case where
the initial temperature equals the freezing temper-
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NOMENCLATURE
A coefficient in quadratic Greek symbols
approximation (6) for non- a thermal diffusivity
dimensional temperature B Stefan number, L/{c(T, — T,)}
A,;, Ay quantities defined below d{i = 1,2,3,4) location of zone boundaries
equations (12) and (19), nd{i = 1,2,3,4) non-dimensional x-wise co-
respectively ordinate, (¢ — &, _{)/(6; — 6;_ ;)
B,, B, quantities defined below 0 non-dimensional temperature,
equations (12) and (19), (T— THAT, — T)
respectively v parameter, 1 for the liquid
Big,, Big, Biot number, hoH/k, using phase, o/, for the solid phase
k = k, and k,, respectively 14 non-dimensional x-wise
Bi, Biot number, h,H/k, coordinate, x/H
¢ specific heat p density
C,, C,, Cy quantities defined below T non-dimensional time, o;t/H?.
equations (12), (17) and (19),
respectively Subscripts
D,, E;, F3,  quantities defined below 0 inner surface
G, H, equation (19) 1 outer surface
h heat-transfer coefficient a ambient conditions
H thickness of slab f conditions at solidification
k thermal conductivity front
L enthalpy of solidification i initial conditions at 7 = 0
N number of zones 1 liquid phase
t time r conditions inside roller (inner
T temperature wall)
X coordinate normal to surface s solid phase
measured from roller wall. w conditions at surface
¢ denotes differentiation with
respect to &.

ature. In Section 3.2 the full version of the present
method is applied to the industrial casting of poly-
propylene by way of an illustrative example. Finally,
Section 4 contains a brief conclusion.

2. ANALYSIS

2.1. Description of the cooling process

The cooling and solidification of the film proceeds
in a series of distinct phases. Since the initial temper-
ature of the melt is well above the freezing point, T;,
there is an initial pre-cooling period (Period I) during
which the temperature falls until the inner surface
temperature reaches T;. During Period I conduction
fronts propagate in from the inner and outer surfaces
at different rates. When the inner surface temperature
has fallen to T;, a solidification front begins to
propagate into the molten slab (Period 1I). Through-
out Period II the two conduction fronts continue to
propagate into the molten slab from both the inner
and outer surfaces. Period I1I begins when the conduc-
tion fronts meet. Until this point some part of the
interior remains at the initial temperature, T;.

If the cooling process continues for long enough
on the first roller, the outer surface temperature will
eventually fall to T;. From this point a second
solidification front begins to propagate in from the
outer surface (Period I'V). In the present work calcula-
tions were discontinued at the end of Period III
since, in the particular industrial application under
consideration, the end of the first roller was reached
during Period III.

2.2. Integral relations and boundary conditions

Let the region between x = 0 (at the roller surface)
and x = H (the outer surface of the film) be divided
into N zones. The zones will be so defined as to have
definite physical significance. For example, during
Period 111 zone 1 comprises the solidified material
between x = 0 and 8, H (the solidification front); zone
2 comprises the molten material between x = 6 H
and §,H (the point of maximum temperature); and
zone 3 lies between x = §,H and 6;H = H. The
required integral relations are obtained by integrating
the non-dimensional heat-conduction equation with
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respect to ¢ (= x/H) across each zone. This gives

af* ds; s,
v[d_‘rj; 1 6d¢ — 0(51')?1’1‘ + %d;-1) T:l

=040) — 046,-), i=1..,N (1)

where 8 =(T— T)AT, — T;), T and T, are the local
temperature and the temperature in the roller interior,
respectively, t is non-dimensional time defined as
ayt/H? (o, being the thermal diffusivity of the liquid
phase), v =1 for the liquid phase and v = «,/a, for
the solid phase (a, being the thermal diffusivity of the
solid phase), and 6, = 06/0¢.

At the inner surface, x = 0, the boundary condition
is

0, = Biy 0 até=0 )

where the Biot number, Bi, = hoH/k, h, is the thermal
conductance per unit area of the roller wall, k = k,
(the thermal conductivity in the liquid phase during
Period I) and k = k, (the thermal conductivity in the
solid phase) subsequently.

At the outer surface, x = H, the boundary condition
is

0; = —Bi,(0+ 0,) até=1 3)

where Bi, = h H/k,, h, is the convective heat-transfer
coefficient, and 6, is the non-dimensional temperature
difference between the roller interior and the surroun-
dings.

At the solidification front £ = §, an energy balance
gives

0 =0 (4a)
k{0, — k(0 = (k\/B)dé,/dT (4b)

where f = L/{¢(T; — T;)} is in the form of a Stefan
number and where suffixes s and 1 denote the solid
and liquid phases, respectively, L is the enthalpy
of solidification, ¢ is the specific heat and
by = (T — T, - T).

At a conduction front it is assumed that

0;=0 and O=0,=(T, —TUT~-T) (5)

where T, is the initial temperature during Periods I
and II but the maximum temperature within the film
during Period III.

Within each zone the temperature profile is approx-
imated by a quadratic, i.e.

0 = A+ By, + Cn;
i =& — 8 )6 — 6;_1) (6)

Coefficients A, B and C are determined by the ap-
propriate combination of equations (2), (3), (4a) and
(5). Equation (6) is then substituted into equation
(1) to give N integral relations which together with
equation (4b), when appropriate, give N + 1 first-
order ordinary differential equations for the N + 1
unknown time-dependent parameters, J,,...,0y. 1,

0, (6 at £ = 0) and 0, (during Period III only).

Superficially, perhaps, the present method re-
sembles that due to Bell [7] in that he also split
the domain into a number of strips or zones. Bell,
however, used isotherms as the zone boundaries with
the melt line as a special case. This technique would
probably be difficult to use on the present problem
in which the slab has a uniform initial temperature
and develops large temperature gradients by the end
of Period III.

2.3. Solution for Period 1

The temperature profile in the inner conduction
zone is obtained from equation (6) with boundary
conditions (2) and (5) used to determine coefficients
A, B and C. Thus

o= — 1

. 1 .
[1 + &y Bigyn, — 551 Blm'l{l (7
1+ 56131‘0,

where n, = £/6,.
With substitution of equation (7), equation (1) takes
the form

[4 + 8, Big,

. d ) ,
2+ 6, Bi(,,:lél B'md_.[(‘sl Biy) = 6Big,.  (8)

Equation (8) can be readily solved to give the
inverse relationship

1, 138 2 1,
BTy 3’3%1111(1 +58, Blo,). )

A similar solution can be found for the outer conduc-
tion zone. Equation (9) agrees to well within 1% error
with numerical solutions [12] for the same problem
when Bi,, ranges from 0.1 to 10.0.

The value of J, at the end of Period I and the
beginning of Period II can be easily obtained from
equation (7) by setting 6 = 6; at n, = 0, giving

by =(1— oo/ (-;-Bio. ef).

This value can be substituted in equation (9) to obtain
the corresponding value of 7.

T

(10)

2.4. Temperature profiles and equations for Period 11

Boundary conditions (2), (3), (4a) and (5) are used,
as appropriate, with equations (6) to obtain the
following temperature profiles:

0= aw{l + 51 BiOs(ﬂl - "%)}

+ (0, — 003 :Zonel (lla)
6=10:+(1-6)2n, —n3) :Zone 2 (11b)
0=1 :Zone 3 (ll¢)
8=1—{(1 —683)Bi(l +8,)

(2 + Bi, — Bi, 6:3)}n3 :Zone 4 (11d)

where Biy, = hoH/k,.
Zone 1 comprises the solidified material and
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n, = £/6, where &, is the location of the solidification
front. @, is the value of § at £ = 0. Zone 2 comprises
the cooling molten material and extends from the
solidification front at £ = §, to the inner conduction
front at & = §,, so that n, = (£ — 6,)/(6, — J,). Zone
3 comprises the molten material still remaining at the
initial temperature and bounded by the inner and
outer conduction fronts. Zone 4 comprises the molten
material which is being cooled by convection from
the outer surface; it extends from the outer conduction
front at &, to the outer surface £ =1 so that
na = (£ — 33)/(1 — 33).

The solution for d,, the location of the outer
conduction front, can be found independently and
takes the same form as for Period 1. The remaining
three unknown parameters, namely é,, 8, and 0, are
obtained by solving a system of three first-order
ordinary differential equations derived from equations
(1) and (4b). Substitution of equations (11a) and (11b)
in equations (1) and (4b) leads to the following system
of equations:

6, + A0, = B, (12a)
28, + 8, = 6/(5, — ;) (12b)
8, =0C, (12¢)

where (') denotes differentiation with respect to 1

_ 6w(‘sl BiOs - 2(01' - ew)

51<2 + %5131'05)

6ﬂ(———9‘ = % _ Bi,, 0w>

A,

’

o 1

51<2+%613i05>

2 =

and

. 'I& 2(0f — Ow) _ Bw BiOs
Q_mh{éﬁ 0,

)
5,—5, 6 |

The system of equations (12) can be readily re-
arranged in a form suitable for numerical integration,
ie.

P

51 = C,, 52_51

- 2C,

and

8, = B, — A,C,. (13)

At the start of Period II the system of equations
(13) is singular owing to the initial conditions §, =0
and 6, = 6;; the initial values of 4, and t are obtained
from equation (10) (N.B. J, in Period II corresponds

to ¢, in Period I). This difficulty is overcome by
seeking solutions of the form

dy = alt — Ti)l7

0f - ow = b(‘[' - Ti)“
and

123 =§2i (14)

in the vicinity of t = 7, where 7, and §,; are the initial
values of t and &,. This procedure follows the usual
treatment of singularities in the theory of ordinary
differential equations; see Ince [13] for example.
When solutions of the form of equations (14) are
substituted into equations (12a) and (12b) and the
limit T = (t — 1) = 0 + is taken, they reduce to

—ab(u + V)™ 4+ Aa?t? " = Blb/a)* T = C
a’vi?*~! = bD#* — Eat"
where
A = 16; Bi,,, B = 3a,/a,,
D = 2k, /k))/B

_&15 . 2(1 — 6y
E‘ﬁ&PM+ 5ol |

Acceptable values of a and b can only be found from
a solution of the above pair of equations provided

C = Big, ;B

pu=v=1

All other, apparently possible, choices for u and v
lead to either a = 0 or b = 0. With the values of u
and v determined the equations may be solved for a
and b and the initial values for the derivatives 4,, d,
and 0, (N.B. 8, = a and 8, = —b) are found to be

Tk, 218
0= ﬂer[k] Biy, 550 } (15a)
6 g, 2100

5Zi = 521 Zﬂgf[kl Blos 62;0[ (15b)

o (ke 21 =6y
g, = BIOSB()fI:k]Bl(,s 55 ] (15¢)

An alternative approach for dealing with the singu-
{ar initial conditions is to assume that at the start of
Period 11 the solid phase is so thin that the heat
conduction process is quasi-steady. This implies that
the temperature profile is linear and that the thermal
resistances of the roller wall and the solid phase are
equal. In this way 6, can be explicitly obtained in
terms of 9,, ie.

8, Big,
0w = 0‘{1 " 8, Big, + 1}
This removes the need for equations (12¢) and (13),.
Equations (13), and (13), can now be rewritten as

(16)

8, =0C,, &:ﬁ-zéz (17)
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where

1+ 6, Big, 6,3, —6,)

In the limit as (r — 1) —» 0 the expressions for
8y, 0, and @, obtained using the quasi-steady
approximation agree with those given in equations
(15). Some authors, however, e.g. Hrycak [5] and
Goodman [1] use the quasi-steady approximation
throughout the cooling process. In Section 3 results
obtained by use of this approximation are compared
to those obtained with the full set of equations (13).

Many authors [1, 3, 8, 9] have used the so-called
collocation approach whereby the heat conduction
equation is used to eliminate the explicit appearance
of 6, from boundary condition (4b). Note that this
approach is not required in the present method for
which boundary condition (4b) is used to supply one
of the differential equations of systems (12) and (13).

2.5. Temperature profiles and equations for
Period 111

At the start of Period III the two conduction fronts
meet so that 6, merges with J;. The temperature
profiles are derived in a similar way to those given in
equations (11) and take the form

8 = 6,{1 + 6, Bign, — n})}

+ (68, — 8,03 :Zone 1 (18a)

0=0;+ 0, — 021, — 1) :Zone 2 (18b)

0= Om - {(1 - 52)Bll(0m + Bn)/

(2 + Bi, — Bi, 6,)}n} :Zone 3 (18¢)
where 6., is the non-dimensional maximum temper-
ature. Zones 1 and 2 are as for Period II except
that £ = §, is now the location of the temperature
maximum rather than a conduction front. Zone 3 of
Period II disappears and Zone 4 becomes Zone 3.

The four unknown parameters &,, d,, 6, and 6,
are found by solving a system of four first-order
ordinary differential equations derived from equations
(1) and (4b). The equations are obtained by substitut-
ing equations (18) into equations (1) and (4b) and take
the form

0, + A30, = B, (19a)

28, + 8, — G50, = 6/(8, — 6,) (19b)
D38, + Esf, = —F, (19¢)

3, =0C, (19d)
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where A, = A,, B, = B, and

¢, = Bef[g {2«), -0, 9, Bio.}

k| 8.6 o,
28— ) ]
(6, —3,) -6

_ Bi; (0 + 0,X1 — 6,){4 + (1 — 26,)Bi,}

Ds 6 + 3Bi (1 — 3,)

Fy = 2Bi,(8,, + 6,).
and
Gy =26, - 61)/(0m - er)~

The system of equations (19) can be readily re-
arranged in a form suitable for numerical integration,
as follows:

51 =C,, 52 = H,, gw = B; — A5C;
and

O = —(F3 + D3H,)/E, (20)

_ F3Gy /< D3G,>
_.Es} 1+255)

The initial conditions are supplied by the solutions
at the end of Period II.

where

6
R

3. RESULTS AND DISCUSSION

3.1. Comparison with Westphal’s series solution

Before applying the present method to the partic-
ular industrial problem for which it was developed,
comparisons will be made with Westphal’s [11] series
solution. Westphal considered the case where the
initial temperature is at the freezing point. The heat-
transfer domain is semi-infinite with a convective
boundary condition of the form

oT

—k—=KT-T)

o atx =0,

For the special case of the semi-infinite domain
with T, = T; and T, constant it can be shown by
elementary dimensional analysis that the solidification
front, x;, and surface temperature may be expressed
as a function of two parameters

xih_ oy aht
k _fn<ﬂ’ k2>

2
0, =fn (ﬂ, %)

Westphal presented his solutions for xch/k and 4,
in the form of a series in powers of ah?t/k2.
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Table 1. Comparison between the present theory and Westphal’s theory

hxg/k 0.
B Truncation Truncation
apt Westphal error Carpenter  Westphal error Carpenter
Case (a): ice, f = 35.69
0.1 0.00280 0.15 x 1077 0.00280 0.997 0.24 x 107¢ 0.997
1.0 0.0276 0.16 x 10°*  0.0276 0.973 033 x 1073 0973
10.0 0.247 0.018 0.249 0.782 0.32 0.802
Case (b): ice, § = 8.923
0.1 000111 0.15x107%  0.00111 0.989 0.1 x 1073 0.989
1.0 0.106 0.15x 1072 0.106 0.904 0.09 0.905
10.0 0.267 6 0.787 — — 0.563
Case (c): polyethylene, § = 0.973
0.001 0.00103 0.12 x 1077 0.00103 0.999 012 x 1073 0.999
0.01 0.0102 0.12 x t0~*  0.0102 0.990 0.13 x 1073 0.990
0.1 0.0939 0.013 0.0943 0913 0.138 0917
Case (d): lead, § = 0.622
0.001 0.00161  0.11 x 10°¢  0.00161 0.998 0.35 x 107* 0.998
0.01 0.0158 0.11 x 107*  0.0158 0.985 0.56 x 1072 0.985
0.1 0.130 0.135 0.138 0.853 0.465 0.886

For the special case presently being considered the
initial solutions (15) reduce to

1k . .
51=EEBIOS and 6, = —Biy, 0,

k, B k2
1 ah?t
0w=1__ s’y
B k2

These initial solutions are in exact agreement with
the leading terms of Westphal’s series for x;h/k and
0,. Note, however, that in the limit as t -0+ the
assumed temperature profile used in the present
method for the solid phase is exact.

Further comparisons between the present integral
method and Westphal’s series solution are made in
Table 1. Four cases, corresponding to real industrial
applications, are considered giving a wide range of
Stefan number, f. (Note that in the present context
¢, is used in the definition of §.)

Case (a): ice. T; = 0°C, T, = —5°C,
h=10Wm 'K~! L=373kJkg !,
¢=209kJkg 'K~

Case (b): ice. As above except T, = —20°C.

Case (c): polypropylene. T; = 120°C, T, = 20°C,
h=175Wm 'K,
L =210kJkg ?,
c=216kJkg 'K,

Case (d): lead. T; = 327°C, T, = 40°C,
h=120Wm 'K,
L=247kIkg" !,
c=0138kJkg K.

The conditions for Case (d) were taken from Hills
and Moore [14]. The truncation-error estimate given
in Table 1 for Westphal’s solution was made by
dividing the last terms of the series given in ref. [11],
ie. the O{(ah®t/k*)*} terms, by the sums of the other
given terms. It can be seen from Table 1 that, provided
this truncation-error remains reasonably small, there
is almost perfect agreement between the resuits
obtained by Westphal and the present method. Note
that although Westphal’s solution is restricted to
relatively small values of ah?t/k?, particularly when
is small, there is no such restriction on the present
methods.

A search has been undertaken for published numer-
ical solutions for comparison with the present method.
However, no suitable examples were found. It is worth
noting that, in order to obtain numerical solutions
for the sort of problem considered in Section 3.2, a
special procedure would in any case be required to
deal with the singularity at the start of Period II and
it is probable that this procedure would be analytic
in form.

3.2. Application of method to the casting of
polypropylene

For the particular industrial problem under consid-
eration, involving the casting of polypropylene film,
the following input parameters and material proper-
ties were specified.
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PERIOD I PERIOD I PERIOD I
Yt ~ - o~ _M\
1.0 ] | L~
l 2.,
Outer Conduction Front Locus of Point of Moximum N
6 g | Temperature
!
|
)_ I
I
tnner Conduction Front l
T i
1
b 1. "
10 o™ i
FiG. 1. The development of conduction and solidification fronts with non-dimensional time: ——, Bi; = 0.2;
-—-— Bi, =20, , Bi; = 0.2 with quasi-steady approximation.

Initial thickness of polypropylene film = 1.35mm.

3.2.1. Temperatures. T, =280°C, T, =20°C, T, =
20°C, T; = 120°C.

3.2.2. Material properties at 120°C. p; = 800kgm ™3,
k=0012Wm 2K™!, ¢ =25klkg7 'K, o=
5.1 x 10" *cm?s™!, k/k, = 1.425, o,/0, = 1.65 and
L=210kJkg™!.

The variation of material properties with temper-
ature was neglected in the present work.

3.2.3. Heat-transfer coefficients. The heat-transfer
coefficient for the roller was approximately h, =
1750 Wm~2K ™! corresponding to Biy, = 20.0. The
values of the convective heat-transfer coefficient for
the outer surface were taken as

Ambient air: h; = 17.5Wm~2K ! corresponding to
Bi, =02
Air chamber: h; = 175Wm~2K ~! corresponding to
Bi, = 20.

Typically the film takes about 3.9s to reach the end
of the first roller corresponding to a non-dimensional
time of t = 0.109.

The systems of equations (13) and (20) were inte-
grated numerically using a Runge-Kutta-Merson
method but many other standard numerical methods
would have been equally suitable.

The computed values of the locations of the conduc-
tion and solidification fronts are plotted in Fig. 1 for
both cases of interest, namely Bi;, = 0.2 and 2.0. The
beginning and ends of the periods shown in Fig. 1
correspond to Bi; = 0.2. The corresponding values of
non-dimensional temperatures (namely the inner and

outer surface temperatures, 6,, and 6,,;, and max-
imum temperature, 0,) are plotted in Fig. 2. The
computations were continued until the end of Period
ITI, ie. until 0, reached 6;. For the industrial
application in question temperature profiles were
required at the end of the first roller corresponding
to T = 0.109. These profiles are plotted in Fig. 3.

In all three figures results obtained with use of the
quasi-steady approximation are also presented. As
explained towards the end of Section 2.4 this approx-
imation involves the use of a linear temperature profile
in the solid phase and has the advantage of reducing
the number of dependent variables by one. By compar-
ing the quasi-steady results with the more accurate
ones in Figs. 1-3 it can be seen that the quasi-steady
approximation is reasonably accurate, especially dur-
ing the earlier stages of the cooling process.

4. CONCLUSIONS

A simple integral method has been developed and
shown to be capable of dealing with a relatively
complex, transient, one-dimensional heat-conduction
problem involving change of phase. The method is
fairly flexible. For example, computations could be
continued into Period IV or on to the next roller by
introducing additional zones with the corresponding
equations. The method has already been applied to
another industrial problem [15].
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FiG. 2. Development of dimensionless maximum temperature and outer and inner wall temperatures with
non-dimensional time (key as in Fig. 1).
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F1G. 3. Temperature profiles at t = 0.109: «---- , quasi-steady approximation.
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Unsteady one-dimensional heat conduction with change of phase

UNE METHODE INTEGRALE MULTI-ZONALE POUR DES PROBLEMES DE
CONDUCTION THERMIQUE VARIABLE; MONODIMENSIONNELLE; AVEC
CHANGEMENT DE PHASE

Résumé—On présente une méthode pour calculer la température dans une couche de matériau fondu qui
se solidifie avec des vitesses de refroidissement trés différentes sur les surfaces interne ou externe. La couche
est divisée en un nombre de zones ayant des frontiéres mobiles dans le temps, fronts de solidification ou
de conduction. Des approximations appropriées sont faites pour le profil de température et I'équation
intégrale du bilan de chaleur appliqués séparément dans chaque zone. Ceci conduit 4 des systémes
d’équations différentielles du premier ordre qui peuvent étre intégrées numériquement en utilisant des
méthodes classiques simples. Des résultats sont présentés qui correspondent a la production industrielle
du film de propyléne.

EIN MEHRSCHICHTEN-VERFAHREN ZUR LOSUNG VON INSTATIONAREN
EINDIMENSIONALEN WARMELEITPROBLEMEN MIT PHASENWECHSEL

Zusammenfassung—Es wird eine Methode zur Berechnung der Temperatur in einer erstarrenden Schicht
aus geschmolzenem Material vorgestellt, wobei die Abkiihlungsgeschwindigkeiten an den inneren bzw.
duBeren Oberflichen sehr unterschiedlich sind. Zum Zweck der Berechnung wurde die Schicht in eine
Anzahl von Zonen mit zeitverdnderlichen Berandungen, wie z.B. Erstarrungs- oder Erwdrmungsfront,
unterteilt. Es werden geeignete Niherungen fiir das Temperaturprofil und die Integralgleichung der Wir-
mestrombilanz durchgefiihrt und fiir jede Zone separat angewandt. Dies fiihrt zu einem Gleichungssystem,
bestehend aus gewohnlichen Differentialgleichungen 1. Ordnung, die mit Hilfe einfacher Lésungsmethoden
numerisch integriert werden konnen. Die Ergebnisse, die mit den Gegebenheiten bei der industriellen
GuBerzeugung von Polypropylen-Folien iibereinstimmen, werden vorgestellt.

MHOI'030HAJIBHbI UHTEIPAJIBHBIN METOX IJ1s1 HECTALIMOHAPHbBIX
OJHOMEPHBIX 3AJAY TEITJIOIMPOBOJHOCTHU C ®A30OBLIMU MNPEBPAIIEHUAMHU

Aunorauns—IIpeanoxen MeTOI pacuyeTa TeMIEPaTyphl B 3aTBepACBAOLIEM CIAHTKE PacCIUIaBJIEHHOTO
MaTepuasa, BHyTPEHHAS W HApyXHasd OBEPXHOCTH KOTOPOTO OXJIAXAATCA C Pa3HONH MHTEHCHBHOCTBIO.
[Mpy aHanu3e CIMTOK AEJHICA HA HECKOJIBKO 30H C MOABHXHBIMH IPaHHLAMH, T.c. DPOHTAMH 3aTBepie-
BAHUSA WK TEMIONPOBOAHOCTH. TemnepaTypHbie NPodHIIH ANNPOKCHMHPOBAJIHNCS, A IJ18 KaXI0H 30HbI B
OTIENILHOCTH NPUMEHAIOCh MHTErpajbHOE ypaBHeHHE TemioBoro 6ananca. DTOT NOAXOA NPHBOIMT K
cHCTeMaM oObIKHOBEHHBIX AH(dEPeHUIHaNIbHBIX YPaBHEHUH NEPBOTO NOPAAKA, KOTOPbIE HHTETPUPYIOTCS
HUCJIEHHOTO OOBIYHBIMH MeTOJaMH. PacyeThl COOTBETCTBYIOT CJIyMar0 NPOMBILIEHHOW OT/IMBKH MOJIH-
MPOMHJICHOBOH IIEHKH.

957



