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Abstract-A method is presented for calculating the temperature in a solidifying slab of molten material 
with greatly differing cooling rates on the inner and outer surfaces. For the purposes of analysis the slab 
is divided into a number of zones having time-varying boundaries, e.g. solidification or conduction fronts. 
Appropriate approximations are made for the temperature profile and the heat-balance integral equation 
applied separately in each zone. This leads to systems of first-order ordinary differential equations which 
can be integrated numerically by using simple standard methods. Results are presented which correspond 

to the industrial casting of polypropylene film. 

1. INTRODUCTION 

THE WORK described in this paper was motivated by 
a requirement to predict temperature profiles in a 
polypropylene film during casting. The casting process 
involves passing molten film over a series of chill 
rollers which cools and solidifies it. Additional 
cooling, due to convection from the outer surface of 
the film, also occurs. The convective cooling could be 
boosted ten-fold by installing an air chamber. An 
assessment had to be made of the effect of this on the 
overall cooling process. In particular, predictions of 
the temperature profiles at the end of the first roller, 
with and without an air chamber, were required. To 
a good approximation the cooling process could be 
regarded as one-dimensional. Thus a method was 
required for calculating the temperature in a solidify- 
ing slab of initially molten material with greatly 
differing cooling rates on the inner and outer surfaces. 

As is common in such industrial problems only 
approximate values were available for the various 
input parameters, such as the convective heat-transfer 
coefficients and the physical properties of the material. 
Consequently, provided any singular behaviour is 
properly treated, there would be little point in develop- 
ing a highly accurate numerical approach to the 
problem. Thus the integral method described below 
was developed. This method is an extension to that 
devised by Goodman and others [l-4]. A singularity 
is found to occur when the liquid material first reaches 
its freezing temperatere. A special procedure for 
dealing with this singularity is introduced. The 
method is fairly general and should be applicable to 
other similar situations. Several previous authors 
[l-lo] have used integral methods to investigate 
problems similar to the present one. These authors, 

however, have considered model problems which are 
rather simpler than the present one. For instance, in 
most cases the initial temperature has been set equal 
to the melting temperature. This greatly simplifies 
matters since it means that the temperature of one of 
the phases remains constant, making any calculation 
thereof unnecessary. Yuen [8] includes initial sub- 
cooling in his analysis but in his case either fixed 
temperature or fixed heat-transfer rate is imposed as 
a boundary condition. 

In the present method the heat-transfer domain is 
divided into zones. The boundaries of the zones are 
defined so as to have definite physical significance, 
e.g. a line of solidification or position of a conduction 
front. Appropriate approximations are made for the 
temperature profile in each zone and the heat-balance 
integral equation applied separately to each zone. 
In this way relatively simple systems of first-order 
ordinary differential equations are derived. These can 
be readily integrated numerically by simple standard 
techniques. 

The paper is set out in the following way. The 
analytical treatment is developed in Section 2. Section 
2.1 describes the cooling process and identifies three 
time periods-a sub-cooling period and two subse- 
quent periods. The integral relations and boundary 
conditions are discussed in Section 2.2. The solution 
for Period I is obtained in Section 2.3. The temper- 
ature profiles and governing equations for Periods II 
and III are derived in Sections 2.4 and 2.5, respectively. 
Results and discussion are presented in Section 3. In 
Section 3.1 comparisons are made between the results 
of Westphal’s [ 1 l] series solution and those obtained 
using the present method. However, Westphal’s solu- 
tion only applies to the relatively simple case where 
the initial temperature equals the freezing temper- 
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NOMENCLATURE 

A coefficient in quadratic Greek symbols 
approximation (6) for non- a thermal diffusivity 
dimensional temperature B Stefan number, L/{c,(‘& - T,)} 

A2TA3 quantities defined below di(i = 1,2,3,4) location of zone boundaries 
equations (12) and (lQ), qAi = 1,2,3,4) non-dimensional x-wise co- 
respectively ordinate, (5 - c?_ ,)/(S, - hi_ ,) 

B,, B3 quantities defined below 8 non-dimensional temperature, 
equations (12) and (lQ), (T- T,)KC - T,) 
respectively V parameter, 1 for the liquid 

BiOi, Bio, Biot number, hOH/k, using phase, as/a, for the solid phase 
k = k, and k,, respectively 5 non-dimensional x-wise 

Bi, Biot number, h,H/k, coordinate, x/H 
C specific heat P density 

c2, c2, c, quantities defined below 7 non-dimensional time, a,t/H’. 
equations (12), (17) and (lQ), 
respectively Subscripts 

D,, E,, F,, quantities defined below 0 inner surface 

GJ, H3 equation (19) 1 outer surface 
h heat-transfer coefficient ambient conditions 
H thickness of slab f” conditions at solidification 
k thermal conductivity front 
L enthalpy of solidification i initial conditions at 7 = 0 
N number of zones 1 liquid phase 
t time r conditions inside roller (inner 

T temperature wall) 
X coordinate normal to surface S solid phase 

measured from roller wall. W conditions at surface 

r denotes differentiation with 
respect to r. 

ature. In Section 3.2 the full version of the present 
method is applied to the industrial casting of poly- 
propylene by way of an illustrative example. Finally, 
Section 4 contains a brief conclusion. 

2. ANALYSIS 

2.1. Description of the cooling process 
The cooling and solidification of the film proceeds 

in a series of distinct phases. Since the initial temper- 
ature of the melt is well above the freezing point, T,, 
there is an initial pre-cooling period (Period I) during 
which the temperature falls until the inner surface 
temperature reaches T,. During Period I conduction 
fronts propagate in from the inner and outer surfaces 
at different rates. When the inner surface temperature 
has fallen to T,, a solidification front begins to 
propagate into the molten slab (Period II). Through- 
out Period II the two conduction fronts continue to 
propagate into the molten slab from both the inner 
and outer surfaces. Period III begins when the conduc- 
tion fronts meet. Until this point some part of the 
interior remains at the initial temperature, T. 

If the cooling process continues for long enough 
on the first roller, the outer surface temperature will 
eventually fall to T,. From this point a second 
solidification front begins to propagate in from the 
outer surface (Period IV). In the present work calcula- 
tions were discontinued at the end of Period III 
since, in the particular industrial application under 
consideration, the end of the first roller was reached 

during Period III. 

2.2. Integral relations and boundary conditions 
Let the region between x = 0 (at the roller surface) 

and x = H (the outer surface of the film) be divided 
into N zones. The zones will be so defined as to have 
definite physical significance. For example, during 
Period III zone 1 comprises the solidified material 
between x = 0 and S 1 H (the solidification front); zone 
2 comprises the molten material between x = 6, H 
and I&H (the point of maximum temperature); and 
zone 3 lies between x = a2H and 6,H = H. The 
required integral relations are obtained by integrating 
the non-dimensional heat-conduction equation with 
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respect to 5 (= x/H) across each zone. This gives 

d *I 
v- [S d7 ai+, 

0dt - @a,)% + f&5,_,)+ 1 
= e<(di) - BXai- l)r i= l,...,N (I) 

where 0 = (T - T,)/(T - T,), T and T, are the local 
temperature and the temperature in the roller interior, 
respectively, 7 is non-dimensional time defined as 
a,t/H’ (a, being the thermal diffusivity of the liquid 
phase), v = 1 for the liquid phase and v = as/a, for 
the solid phase (a, being the thermal diffusivity of the 
solid phase), and or. = a@@<. 

At the inner surface, x = 0, the boundary condition 
is 

Bc = Bi, 0 atc=O (2) 

where the Biot number, BiO = h,H/k, h,, is the thermal 
conductance per unit area of the roller wall, k = k, 
(the thermal conductivity in the liquid phase during 
Period I) and k = k, (the thermal conductivity in the 
solid phase) subsequently. 

At the outer surface, x = H, the boundary condition 
is 

et = -Bi,(B + e,) atr=l (3) 

where Bi, = h,H/k,, h, is the convective heat-transfer 
coefficient, and 8, is the non-dimensional temperature 
difference between the roller interior and the surroun- 
dings. 

At the solidification front 5 = 6, an energy balance 
gives 

e = ef Ma) 

Ue,), - W,), = (h/B)d~,/dT W 

where /I = L/{c,(ll, - T,)) is in the form of a Stefan 
number and where suffixes s and 1 denote the solid 
and liquid phases, respectively, L is the enthalpy 
of solidification, c is the specific heat and 
e, = (q - ~,y(7y - zy). 

At a conduction front it is assumed that 

ee = 0 and e = e, E (T, - 7y(7y - T,) (5) 

where T, is the initial temperature during Periods I 
and II but the maximum temperature within the film 
during Period III. 

Within each zone the temperature profile is approx- 
imated by a quadratic, i.e. 

e=A+E?fi+Cfff; 

?fi = (5 - &_ J/@, - 6,_ 1). (6) 

Coefficients A, B and C are determined by the ap- 
propriate combination of equations (2), (3), (4a) and 
(5). Equation (6) is then substituted into equation 
(1) to give N integral relations which together with 
equation (4b), when appropriate, give N + 1 first- 
order ordinary differential equations for the N + 1 
unknown time-dependent parameters, 6,). . . , a,_ 1, 

OH (0 at 5 = 0) and 0, (during Period III only). 
Superficially, perhaps, the present method re- 

sembles that due to Bell [7] in that he also split 
the domain into a number of strips or zones. Bell, 
however, used isotherms as the zone boundaries with 
the melt line as a special case. This technique would 
probably be difficult to use on the present problem 
in which the slab has a uniform initial temperature 
and develops large temperature gradients by the end 
of Period III. 

2.3. Solution for Period I 
The temperature profile in the inner conduction 

zone is obtained from equation (6) with boundary 
conditions (2) and (5) used to determine coefficients 
A, B and C. Thus 

e= l 
1 +td,Bi,, [ 

1 + h1 Bio,ql - 36, BiOltjf 1 (7) 

where ‘I, = t/S,. 
With substitution of equation (7), equation (1) takes 

the form 

6, &,&(6, BiOJ = 6Bi&. (8) 

Equation (8) can be readily solved to give the 
inverse relationship 

1 16, 2 
’ = 12”’ ’ 3 Biol - 3Bi~, -ln(l +ih,Bi,,). (9) 

A similar solution can be found for the outer conduc- 
tion zone. Equation (9) agrees to well within 1% error 
with numerical solutions Cl23 for the same problem 
when Bi,,, ranges from 0.1 to 10.0. 

The value of 6, at the end of Period I and the 
beginning of Period II can be easily obtained from 
equation (7) by setting 0 = or at V, = 0, giving 

6, = (1 - e,) i( > iBi,,e, 

This value can be substituted in equation (9) to obtain 
the corresponding value of 7. 

2.4. Temperature projiles and equations for Period II 
Boundary conditions (2), (3), (4a) and (5) are used, 

as appropriate, with equations (6) to obtain the 
following temperature profiles: 

0 = e,{l + 6, &,(tll - v:)) 

+ (0, - e,)q: : Zone 1 (lla) 

e = 8, + (1 - e,x2rl, - Ir:) : Zone 2 (llb) 

e=i : Zone 3 (1 lc) 

e = 1 - ((1 - 6,)Bil(l + e,y 

(2 + Bi, - Bi, S,)}v: : Zone 4 (lld) 

where Bi,, = h,H/k,. 
Zone 1 comprises the solidified material and 
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n1 = t/S, where Sr is the location of the solidification 
front. B, is the value oft’? at < = 0. Zone 2 comprises 
the cooling molten material and extends from the 
solidification front at 5 = 6, to the inner conduction 
front at 5 = 6,, so that n2 = (5 - S,)/(S, - 6,). Zone 
3 comprises the molten material still remaining at the 
initial temperature and bounded by the inner and 
outer conduction fronts. Zone 4 comprises the molten 
material which is being cooled by convection from 
the outer surface; it extends from the outer conduction 
front at ~5~ to the outer surface 5 = 1 so that 

t/4 = (6 - ~,)A1 - b). 

The solution for 6,, the location of the outer 
conduction front, can be found independently and 
takes the same form as for Period I. The remaining 
three unknown parameters, namely 6,) h2 and 8, are 
obtained by solving a system of three first-order 
ordinary differential equations derived from equations 
(1) and (4b). Substitution of equations (1 la) and (11 b) 
in equations (1) and (4b) leads to the following system 
of equations: 

4, + A,& = B, (124 

26, + 8, = 6/Q, - 6,) (12b) 

8, = C* (12c) 

where (‘) denotes differentiation with respect to 7 

and 

The system of equations (12) can be readily re- 
arranged in a form suitable for numerical integration, 
i.e. 

s, = c2, S,~6--_ 
6, - 6, 2c2 

and 

8, = B2 - A,C2. (13) 

At the start of Period II the system of equations 
(13) is singular owing to the initial conditions 6, = 0 
and 0, = Qr; the initial values of 6, and 7 are obtained 
from equation (10) (N.B. S, in Period II corresponds 

to 6r in Period I). This difficulty is overcome by 
seeking solutions of the form 

6, = u(t - Ti)“, 0, - Bw = qs - Ti)P 

and 

6, = 6,i (14) 

in the vicinity of 7 = 7i where 7i and ~5,~ are the initial 
values of 7 and 6,. This procedure follows the usual 
treatment of singularities in the theory of ordinary 
differential equations; see Ince [13] for example. 

When solutions of the form of equations (14) are 
substituted into equations (12a) and (12b) and the 
limit 5 = (7 - 7i) -+ 0 + is taken, they reduce to 

-ab(p + v)?‘+~~’ + Aa2?*“-’ = B(b/a)F’ - C 

&+ ’ = bDf’ _ &,f’ 

where 

A = 40, Bias, B = 3c(,/tl,, C = Bi,, &B 

D = WslWB 

OS 
+ 2(1 - 4) 

62iof 

Acceptable values of a and b can only be found from 
a solution of the above pair of equations provided 

p=v=l. 

All other, apparently possible, choices for p and v 
lead to either a = 0 or b = 0. With the values of p 
and v determined the equations may be solved for a 
and b and the initial values for the derivatives 8,, 8, 
and e, (N.B. 8, = a and 0, = -b) are found to be 

An alternative approach for dealing with the singu- 
lar initial conditions is to assume that at the start of 
Period II the solid phase is so thin that the heat 
conduction process is quasi-steady. This implies that 
the temperature profile is linear and that the thermal 
resistances of the roller wall and the solid phase are 
equal. In this way 0, can be explicitly obtained in 
terms of 6,, i.e. 

(16) 

This removes the need for equations (12~) and (13),. 
Equations (13), and ( 13)2 can now be rewritten as 

& = c*, 6, = -L- - 2c, 
6, - 6, 

(17) 
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where 

c, = ge, [ $ 1 +FBio, - e2;; _“s’) . 
I 1 f 2 1 1 

In the limit as (7 - zi) + 0 the expressions for 
sli, & and dwi obtained using the quasi-steady 
approximation agree with those given in equations 
(15). Some authors, however, e.g. Hrycak [S] and 
Goodman [l] use the quasi-steady approximation 
throughout the cooling process. In Section 3 results 
obtained by use of this approximation are compared 
to those obtained with the full set of equations (13). 

Many authors [1, 3, 8, 91 have used the so-called 
collocation approach whereby the heat conduction 
equation is used to eliminate the explicit appearance 
of 6, from boundary condition (4b). Note that this 
approach is not required in the present method for 
which boundary condition (4b) is used to supply one 
of the differential equations of systems (12) and (13). 

2.5. Temperature profiles and equations for 
Period III 

At the start of Period III the two conduction fronts 
meet so that b2 merges with 6,. The temperature 
profiles are derived in a similar way to those given in 
equations (11) and take the form 

: Zone 1 (18a) 

0 = of + (0, - efwq2 - tl:) 

f3 = em - ((1 - 6,)Bi,(B, + e,y 

(2 + Bi, - Bi, S,)}V: 

: Zone 2 (18b) 

: Zone 3 (18~) 

where 0, is the non-dimensional maximum temper- 
ature. Zones 1 and 2 are as for Period II except 
that 5 = 6, is now the location of the temperature 
maximum rather than a conduction front. Zone 3 of 
Period II disappears and Zone 4 becomes Zone 3. 

The four unknown parameters 6,, a,, 0, and 0,,, 
are found by solving a system of four first-order 
ordinary differential equations derived from equations 
(1) and (4b). The equations are obtained by substitut- 
ing equations (18) into equations (1) and (4b) and take 
the form 

8, + A,& = B, 

26, + 8, - G38,,, = 6/(6, - 6,) 

D,& + E3&, = -F, 

s, = c3 

(1% 

(19b) 

(19c) 

(19d) 

where A, = A,, B, = B, and 

c3 = fief ; [I I 

wk, a 
1 f 

evg8i,. 
f 

w, - 0,) 
- (6, - 4) - of 1 

D 
3 

= Bi#L, + e.Xi - a,){4 + (1 - 262)Bi1} 
6 + 3Bi1(l - 6,) 

F3 = 2Bi1(0, + e,). 

G3 = w* - w(k - 4). 

The system of equations (19) can be. readily re- 
arranged in a form suitable for numerical integration, 
as follows: 

s, = c3, 82 = H,, 8, = B, - A,C, 

and 

where 

8, = -(F3 + D,H,)/E, (20) 

H3 = 
6 -_-2C,_~}/(l +y). 

62 - 61 

The initial conditions are supplied by the solutions 
at the end of Period II. 

3. RESULTS AND DISCUSSION 

3.1. Comparison with Westphal’s series solution 
Before applying the present method to the partic- 

ular industrial problem for which it was developed, 
comparisons will be. made with Westphal’s [ 1 l] series 
solution. Westphal considered the case where the 
initial temperature is at the freezing point. The heat- 
transfer domain is semi-infinite with a convective 
boundary condition of the form 

-k;=h(T- T,) at x = 0. 

For the special case of the semi-infinite domain 
with q = T, and T, constant it can be shown by 
elementary dimensional analysis that the solidification 
front, xy, and surface temperature may be expressed 
as a function of two parameters 

t?,=fn ( > p,$ . 

Westphal presented his solutions for x,h/k and B,, 
in the form of a series in powers of ah2t/k2. 
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Table 1. Comparison between the present theory and Westphal’s theory 

k/k 6, 

h2 Truncation Truncation 
a-t 

k2 
Westphal error Carpenter Westphal error Carpenter 

Case (a): ice, 1 = 35.69 

0.1 0.00280 0.15 x lo-’ 0.00280 0.997 0.24 x 1O-6 0.997 
1.0 0.0276 0.16 x lo-“ 0.0276 0.973 0.33 x 1o-3 0.973 

10.0 0.247 0.018 0.249 0.782 0.32 0.802 

Case (b): ice, j = 8.923 

0.1 0.00111 0.15 X 10-5 0.00111 0.989 0.1 x 1o-3 0.989 
1.0 0.106 0.15 X 10-r 0.106 0.904 0.09 0.905 

10.0 0.267 6 0.787 - - 0.563 

Case (c): polyethylene, /3 = 0.973 

0.001 0.00103 0.12 X lo-’ 0.00103 0.999 0.12 x 10-S 0.999 
0.01 0.0102 0.12 x 1om4 0.0102 0.990 0.13 x 10-J 0.990 
0.1 0.0939 0.013 0.0943 0.913 0.138 0.917 

Case (d): lead, fi = 0.622 

0.001 0.00161 0.11 x 1om6 0.00161 0.998 0.35 x 1o-4 0.998 
0.01 0.0158 0.11 x 10-3 0.0158 0.985 0.56 x 10m2 0.985 
0.1 0.130 0.135 0.138 0.853 0.465 0.886 

For the special case presently being considered the 
initial solutions (15) reduce to 

i.e. 

xrh._ 1 u,h,2t 
--- 

k, B k: 

These initial solutions are in exact agreement with 

the leading terms of Westphal’s series for x,h/k and 
8,. Note, however, that in the limit as t --* Of the 
assumed temperature profile used in the present 
method for the solid phase is exact. 

Further comparisons between the present integral 
method and Westphal’s series solution are made in 
Table 1. Four cases, corresponding to real industrial 
applications, are considered giving a wide range of 
Stefan number, /?. (Note that in the present context 
c, is used in the definition of fl.) 

Case (a): ice. T, = 0°C T. = -5°C 
h= 10Wm-1K-1,L=373kJkg-1, 
c = 2.09kJkg-‘K-l. 

Case (b): ice. As above except T, = -20°C. 

Case (c): polypropylene. T, = 120°C T, = 2o”C, 
h = 17.5 Wm-‘K-l, 
L = 210kJkgg’, 
c= 2.16kJkg-‘K-l. 

Case (d): lead. Tr = 327°C 7, = 40°C 
h = 120Wm~‘K-‘, 
L = 24.7 kJ kg - r, 

c=O.l38kJkg-‘K-l. 

The conditions for Case (d) were taken from Hills 
and Moore [ 143. The truncation-error estimate given 
in Table 1 for Westphal’s solution was made by 
dividing the last terms of the series given in ref. [l 11, 
i.e. the O{(ah’t/k’)“} terms, by the sums of the other 
given terms. It can be seen from Table 1 that, provided 
this truncation-error remains reasonably small, there 
is almost perfect agreement between the results 
obtained by Westphal and the present method. Note 
that although Westphal’s solution is restricted to 
relatively small values of ah’t/k’, particularly when /I 
is small, there is no such restriction on the present 
methods. 

A search has been undertaken for published numer- 
ical solutions for comparison with the present method. 
However, no suitable examples were found. It is worth 
noting that, in order to obtain numerical solutions 
for the sort of problem considered in Section 3.2, a 
special procedure would in any case be required to 
deal with the singularity at the start of Period II and 
it is probable that this procedure would be analytic 
in form. 

3.2. Application of method to the casting of 
polypropylene 

For the particular industrial problem under consid- 
eration, involving the casting of polypropylene film, 
the following input parameters and material proper- 
ties were specified. 
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PERIOD I 

Outer Conduchon Front 

tnnerConduct,on Front \ 

i 
Ai 

PERIOD II PERtOD III 

Fe 
I , 

FIG. 1. The development of conduction and solidification fronts with non-dimensional time: -, Ei, = 0.2; 
- - -, Bi, = 2.0; . . . . ..Bi. = 0.2 with quasi-steady approximation. 

Initial thickness of polypropylene film = 1.35 mm. 
3.2.1. Temperatures. T = 28o”C, T, = 2O”C, T. = 

2o”c, & = 120°C. 
3.2.2. Material properties at 120°C. p, = 800 kg m- 3, 

k,=0.012Wm-ZK-1, c,=2.5kJkg-‘K-l, CC,= 
5.1 x 10-4cm2s-1, k,/k, = 1.425, ~,/a, = 1.65 and 
L = 210kJkg-‘. 

The variation of material properties with temper- 
ature was neglected in the present work. 

3.2.3. Heat-transfer coefficients. The heat-transfer 
coefficient for the roller was approximately he = 
1750 W m- * K - ’ corresponding to Bi,, = 20.0. The 
values of the convective heat-transfer coefficient for 
the outer surface were taken as 

Ambient air: hi = 17.5 Wm-‘K-’ corresponding to 
Bi, = 0.2 

Air chamber: hi = 175 W me2 K-i corresponding to 
BiI = 2.0. 

Typically the film takes about 3.9 s to reach the end 
of the first roller corresponding to a non-dimensional 
time of 7 = 0.109. 

The systems of equations (13) and (20) were inte- 
grated numerically using a Runge-Kutta-Merson 
method but many other standard numerical methods 
would have been equally suitable. 

The computed values of the locations of the conduc- 
tion and solidification fronts are plotted in Fig. 1 for 
both cases of interest, namely Bi, = 0.2 and 2.0. The 
beginning and ends of the periods shown in Fig. 1 
correspond to Bi, = 0.2. The corresponding values of 
non-dimensional temperatures (namely the inner and 

outer surface temperatures, &,, and &,,, and max- 
imum temperature, 6,) are plotted in Fig. 2. The 
computations were continued until the end of Period 
III, i.e. until owl reached or. For the industrial 
application in question temperature profiles were 
required at the end of the first roller corresponding 
to 7 = 0.109. These profiles are plotted in Fig. 3. 

In all three figures results obtained with use of the 
quasi-steady approximation are also presented. As 
explained towards the end of Section 2.4 this approx- 
imation involves the use of a linear temperature profile 
in the solid phase and has the advantage of reducing 
the number of dependent variables by one. By compar- 
ing the quasi-steady results with the more accurate 
ones in Figs. l-3 it can be seen that the quasi-steady 
approximation is reasonably accurate, especially dur- 
ing the earlier stages of the cooling process. 

4. CONCLUSIONS 

A simple integral method has been developed and 
shown to be capable of dealing with a relatively 
complex, transient, one-dimensional heat-conduction 
problem involving change of phase. The method is 
fairly flexible. For example, computations could be 
continued into Period IV or on to the next roller by 
introducing additional zones with the corresponding 
equations. The method has already been applied to 
another industrial problem [15]. 
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10-4 10-3 10-2 IO- 
7 

I 

FIG. 2. Development of dimensionless maximum temperature and outer and inner wall temperatures with 
non-dimensional time (key as in Fig. 1). 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

1.0 - 

t - 

\\ \ 
‘\ 

\ 
\ \ \ 

FIG. 3. Temperature profiles at T = 0.109: . . . . , quasi-steady approximation. 
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UNE METHODE INTEGRALE MULTI-ZONALE POUR DES PROBLEMES DE 
CONDUCTION THERMIQUE VARIABLE; MONODIMENSIONNELLE; AVEC 

CHANGEMENT DE PHASE 

RQum&On presente une mbthode pour calculer la temperature dans une couche de mat&iau fondu qui 
se solidifie avec des vitesses de refroidissement tres differentes sur les surfaces inteme ou exteme. La couche 
est divisbe en un nombre de zones ayant des frontieres mobiles dansle temps, fronts de solidification ou 

de conduction. Des approximations appropriks sont faites pour le profil de temperature et I'bquation 
inttgrale du bilan de chaleur appliques separement dans chaque zone. Ceci conduit a des systemes 
d’equations differentielles du premier ordre qui peuvent etre integrees numeriquement en utilisant des 
methodes classiques simples. Des r&sultats sont present&s qui correspondent a la production industrielle 

dutilmdepropyltne. 

EIN MEHRSCHICHTEN-VERFAHREN ZUR LdSUNG VON INSTATIONAREN 
EINDIMENSIONALEN WARMELEITPROBLEMEN MIT PHASENWECHSEL 

Zuaammenfasauag-Es wird eine Methode zur Berechnung der Temperatur in einer erstarrenden Schicht 
aus geschmolzenem Material vorgestellt, wohei die Abkiihlungsgeschwindigkeiten an den inneren bzw. 
lul3eren OhertIHchen sehr unterschiedlich sind. Zum Zweck der Berechnung wurde die Schicht in eine 
Anzahl von Zonen mit zeitverlnderlichen Berandungen, wie z.B. Erstarrungs- oder Erwlrmungsfront, 
unterteilt. Es werden geeignete Naherungen fur das Temperaturprofil und die Integralgleichung der Wlr- 
mestrombilanz durchgefiihrt und fiir jede Zone separat angewandt. Dies fiihrt zu einem Gleichungssystem, 
hestehend aus gewohnlichen Differentialgleichungen 1. Ordnung, die mit Hilfe einfacher Losungsmethoden 
numerisch integriert werden konnen. Die Ergebnisse, die mit den Gegehenheiten hei der industriellen 

GuDerzeugung von Polypropylen-Folien iihereinstimmen, werden vorgestellt. 

MHOl-030HAJIbHbIH MHTEfPAflbHbIH METOA JUDI HECTAHMOHAPHbIX 
OAHOMEPHbIX 3AAA’I TEl-IJIOIIPOBO~HOCTM C QA30BbIMH IIPEBPAIIIEHM5IMM 

Auuoraunn-Hpennox(en Meron pacYeTa TeMnepaTypbI B saTBepneBatomeb4 cnuTKe pacnnaBneHHor0 

MaTepnaJIa,BHyTpeHHsa II HapyxoIas nOBepXHOCTn KOTOpOrO OXJIaxoIaIOTCRC pa3HO8 WHTcHCHBHOCTbIO. 

npn aHaJIH3eCJIHTOK neJInJICa Ha HeCKOJIbKO 30HC nOiIBW)KHblMW rpaHnIIaMn,T.e.Ij3pOHTaMn 3aTBepne- 

BaHHII Mm TenJIOnpOBOLIHOCTu.TeMnepaTypHbIe noO&bWI annpOKCnMIIpOBaJInCb,a &WI KaRnOii 30HbI B 

OTJWIbHOCTA IIpMMcHIUIOCb IIHTerpaJIbHOe ypaBHeHHe TcnJIOEOrO 6anauca. 3TOT nOnXOn npHaOnnT K 

CACTeMaM 06bIKHOBeHHbIX LIn+$epeHuIIaJIbHbIX ypaBHeHHti nepBOr0 nOpanKa,KOTOpbIe IIHTerpupyIOTCII 

'IHCJIeHHOrO 06bI'IHbIMA MeTOfiaMII. PaC'IeTbI COOTBeTCTByIOT CJIylraIO npOMbImJIeHH0~ OTJIHBKII nOJIN- 

nponrineeoeohnnesru. 


